PHYSICAL REVIEW B 79, 153109 (2009)

Broadband negative refraction with a crossed wire mesh

Mirio G. Silveirinha*
Department of Electrical Engineering, Instituto de Telecomunicagdes, University of Coimbra, 3030 Coimbra, Portugal
(Received 16 December 2008; revised manuscript received 3 February 2009; published 29 April 2009)

It is demonstrated that a structured material formed by nonconnected crossed metallic wires may enable
negative refraction over a wide frequency range. This phenomenon is a consequence of the anomalous disper-
sion characteristics of the material, particularly of the fact that the isofrequency contours are hyperbolic. These
properties rely on the nonlocal response of the crossed wire mesh and establish a different paradigm for
obtaining negative refraction without left-handed materials.
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Negative refraction has undoubtedly been in the spotlight
in recent years. Much of the interest in this fascinating phe-
nomenon is caused by the fact that it contradicts our experi-
ence that light is bent by common materials (e.g., glass) in
such a way that the projections of the incident and transmit-
ted rays along the interface are oriented in the same direc-
tion. It was first predicted by Veselago' 40 years ago that
materials with simultaneously negative permittivity and per-
meability (“left-handed” materials) may enable negative
refraction. However, such exotic materials were unknown
at the time, and it was only some years ago that they were
made available in the form of metamaterials.” Shortly after
this finding negative refraction was demonstrated at
microwaves,’ but since structuring materials in the nanoscale
is still a true challenge, only very recently negative refraction
was finally revealed at optical frequencies using a truly
three-dimensional metamaterial.*

It is well known that negative refraction may be obtained
without left-handed materials. For example, one possibility is
to use indefinite anisotropic materials for which one compo-
nent of the permittivity is negative.>™ Another possibility
is to engineer the dispersion characteristic of photonic
crystals.!®!! Here, we demonstrate a distinctively different
route to obtain all-angle broadband negative refraction using
a spatially dispersive material formed by a crossed wire
mesh. It is shown that due to the strongly nonlocal response
of the structured material the dispersion contours of the
propagating mode consist of two hyperbolas and that this
property makes the group velocity (energy flow) to be re-
fracted in an anomalous manner at an interface with air.

The material considered here is a crossed wire mesh of
nonconnected metallic wires with radius r,,. The orientation
of the two arrays of wires is determined by the perpendicular
unit vectors d; and 4, [Fig. 1(a)]. It was demonstrated in our
previous work'? that such material may be characterized by
an anomalously high positive index of refraction in the long
wavelength limit and that such property may enable the
propagation of very subwavelength guided modes, as dem-
onstrated experimentally in Ref. 13. Recently, we have
shown that the resonant excitation of such guided modes
may enable subwavelength imaging.'*

Evidently, the crossed wire mesh has an anisotropic elec-
tromagnetic response. The results of our previous studies'>'#
assumed electromagnetic propagation in a plane normal
(yoz) to the planes of wires. Here, we demonstrate that for
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propagation along a direction parallel to the planes of wires
(xoz) the propagation properties may be dramatically differ-
ent and may enable negative refraction. To demonstrate these
potentials first we will characterize the isofrequency contours
of the bulk metamaterial. As reported in Refs. 12 and 15-17,
in the long wavelength limit the crossed wire mesh may be
characterized by the dielectric function s=g,4, 4, +&; 41,
+e,,li,1, (g, is the relative permittivity of the host medium),
with

FIG. 1. (Color online) Panel (a): geometry of the metamaterial:
two nonconnected wire meshes are oriented at right angles. The
distance (along y) between perpendicular adjacent wires is a/2.
Panel (b): isofrequency contours of the fundamental plane wave
mode for propagation in the xoz plane with electric field in the same
plane. The text insets indicate the value of the normalized frequency
wa/c. The arrows show the orientation of the electric field associ-
ated with a given isofrequency contour.
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where 8,={2m/ [In(a/27r,)+0.5275]}%/a, c is the speed of
light in vacuum, k=(k,,k,,k,) is the wave vector, k;=k-1,,
and a is the distance between adjacent parallel wires. For
simplicity, it is assumed that the wires are perfect conduc-
tors. The effect of metallic loss can be easily accounted for
using the more general formulas of Ref. 12 and is relatively
small provided that the radius of the wires r,, is larger than
the skin depth of the metal,'” which may be verified through
the infrared domain. It is convenient to choose the system
of Cartesian _axes so that 1,=(1,0, 1)/v2 and
i,=(-1,0,1)/2 [see Fig. 1(a)].

Consider the case in which the electromagnetic wave
propagates in the xoz plane, k,=0, with magnetic field polar-
ized along y (the time variation ¢™'*" is suppressed),

Sii(w,ki) = Sh(l

H=Hype™M,, k=(k.0.k,). (2)
The corresponding electric field is given by
Hy ( k k .
= _0(_2ﬁ1 - _lli2> e’k'r. (3)
Wep \ &y €2

Using the Maxwell’s Equations it is straightforward to verify
that the wave vector must follow the dispersion characteristic

K K>
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which, using Eq. (1), may be reduced to a polynomial equa-
tion of third degree in % with B=\sg,w/c,

-4+ 8B (B + K, + kD)
- B4, + 8Bok; + 8Bk + 6k K2 + Sk + 5k7)
+ (=22} + K +K2) =0, (5)

It may be verified that when the operating wave number is
much smaller than the plasma frequency, B<<f,, there is a
unique positive solution for B2. This means that for low fre-
quencies and for a given k=(k,,0,k,) there is always a
propagating mode with electric field in the xoz plane. The
isofrequency contours of this propagating mode are repre-
sented in Fig. 1(b) for a material with r,,=0.05a formed by
metallic wires standing in air (g,=1). As seen in Fig. 1(b)
and also reported in Refs. 15 and 16, for a fixed frequency
the isofrequency contours consist of two hyperbolas with
asymptotes running along directions d; and #,. These hyper-
bolic contours resemble in part the isofrequency contours of
an indefinite material; however, there is an important differ-
ence: the isofrequency contour of an indefinite material con-
sists of a single hyperbola.’ In Fig. 1(b) we have also repre-
sented the electric field vector lines, which are qualitatively
similar to those in an indefinite material.

It is well known that hyperbolic contours may enable
negative refraction at an interface with air.>%%° In order to
investigate this possibility, we consider the geometry shown
in the inset of Fig. 2, which shows an incoming plane wave
illuminating the metamaterial along the direction 6;. The
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FIG. 2. (Color online) Angle of transmission of the energy flow
(Poynting vector) as a function of the angle of incidence for differ-
ent frequencies of operation. The radius is r,,=0.05a, and the host
permittivity is ,=1. The inset represents the geometry of the prob-
lem showing the incident, reflected and refracted waves. Notice that
the wave vector and the Poynting vector are not parallel in the
metamaterial.

angle of refraction 6, for the energy flow (determined by the
Poynting vector) can be calculated using the fact that the
projection of the wave vector onto the interface is
preserved.!? Thus, for a given frequency ® and angle of in-
cidence 6, the wave vector associated with the transmitted
wave is of the form k'=(w/c sin 6;,0,k.), where k. is calcu-
lated using the dispersion equation (5).'® The Poynting vec-
tor is normal to the associated isofrequency contour.!>?0 As
in indefinite media, the angle between the wave vector and
the Poynting vector in the metamaterial is acute.

In Fig. 2 we show the angle 6, as a function of the angle
of incidence 6; for different frequencies of operation. Con-
sistent with the hyperbolic shape of the isofrequency con-
tours, the angle of transmission 6, is negative, i.e., the wave
group velocity suffers, indeed, negative refraction at the in-
terface of the crossed wire mesh with air. The results of Fig.
2 indicate that this phenomenon (unlike in photonic crystals
and left-handed materials) is very broadband, being observed
for a wide range of frequencies. Notice that at the considered
frequencies the electrical size of the unity cell of the crossed
wire mesh is small, a <<\, as required so that homogenization
theory can be applied. The emergence of negative refraction
in the crossed wire mesh has a simple physical justification.
Indeed, consider the scenario depicted in Fig. 1(a), which
shows the incoming wave illuminating the metamaterial
along a direction such that the incoming electric field is
nearly parallel to the direction ;. In these circumstances, it
is clear from the topology of the metamaterial that the in-
coming wave will interact mainly with the set of wires di-
rected along W;. But since these wires are tilted by —45° with
respect to the interface, it is apparent that as the wave propa-
gates in the crossed wire mesh it suffers a negative spatial
shift; or in other words, since the dominant path of propaga-
tion is expected to be along the wires parallel to 4, the
group velocity suffers negative refraction. Thus, in a certain
sense, each set of wires behaves as a waveguide, and the
polarization of the incoming wave controls which set of
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FIG. 3. (Color online) Transmission coefficient as a function of
normalized k, for a fixed frequency and different L. Solid lines:
magnitude; dashed lines: phase. The lattice constant is such that
wa/c=0.6, and the radius of the wires is r,=0.05a. The curves
associated with L=1.25\, were calculated for a regular dielectric
slab with permittivity e=2.

wires is “activated” and which set of wires is “dormant.”
This heuristic interpretation is of course only a very rough
description of the complex wave interaction between the
crossed wires, but it enables one to visualize and relate the
negative refraction to the microstructure of the material.

In order to confirm the homogenization results, we used
the full wave commercial simulator CST Microwave Stu-
dio™ to calculate the transmission coefficient 7 of a crossed
wire mesh slab under plane wave incidence, with magnetic
field along the y direction (Fig. 3). Specifically, we have
calculated T as a function of k, (x component of the wave
vector of the incoming wave) for a normalized frequency of
operation wa/c=0.6. Notice that k, is determined by the
angle of incidence: k,=w/c sin 6,. It can be seen in Fig. 3
that the crossed wire mesh is relatively transparent to radia-
tion for all incident angles and that |T| may be close to unity.
This property is observed over a very wide frequency range
(not reported here for brevity); in general, the transmissivity
tends to improve with increasing frequency. These results
indicate that the crossed wire mesh may be well matched to
free space.

It is interesting to analyze the variation in the phase of
T with k,. For convenience, let us write 7=|T|e™"¢, where
¢=—arg T. It can be seen in Fig. 3 that ¢ is a decreasing
function of k,. Interestingly, such behavior is completely dif-
ferent from that in a conventional dielectric slab with posi-
tive permittivity (green/light gray dashed line in Fig. 3), for
which ¢ increases with k,. Indeed, as proven next, the slope
of ¢ is equal to the spatial shift A suffered by an incoming
beam when it crosses the slab (inset of Fig. 3). In fact, sup-
pose that an incoming beam (e.g., with Gaussian profile)
impinges on the planar slab. Suppose that the magnetic field
at the input interface is H,=H. (x) Using Fourier theory
the incoming beam can be wrltten as a superposition of
plane waves, as H'(x)=[H,(k,)e"*dk,. Evidently, T=T(k,)
may be regarded as the transfer function of the slab. This
means that the magnetic field at the output is such that
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H;’,(x)= I Hy(kx)T(kx)e"kX"dkx. But, if the spatial spectrum of
the incoming beam is highly concentrated at the wave num-
ber k2=cu/ csin 6, i.e., if the beam is a quasiplane wave
propagating along the direction 6, a straightforward analysis
(similar to the one used to define group velocity) shows that
the magnetlc field at the output plane is such that Hj(x)

~ T(ko)e‘Aer’ (x—A), where A=d¢/dk,. Therefore, apart
from a transm1ss1on coefficient, the field at the output plane
differs from the field at the input plane from a spatial shift A,
which is completely determined by the slope of the phase.
This analysis is completely general and is valid for an arbi-
trary material slab. It provides a simple criterion to test the
emergence of negative refraction in metamaterials by testing
if A is positive or negative. Applying the proposed theory to
the crossed wire metamaterial, we see from Fig. 3 that the
slope of ¢ is negative, and thus it follows that the spatial
shift A is also negative. This is direct proof of the emergence
of negative refraction in the metamaterial and fully supports
the homogenization results. In particular, for the curve asso-
ciated with L=15a (L=10a) we have numerically calculated
(for incidence along 6;=45°), A=d¢p/dk,=-0.5L (-0.39L),
which indicates that the transmission angle is #,=tan™' A/L
=-27° (6,=-21°). These values concur well the value pre-
dicted by homogenization, §,=-25° (Fig. 2).

To demonstrate in a conclusive manner the appearance of
negative refraction, we used the method of moments (MoM)
to simulate numerically the response of a finite width
metamaterial slab illuminated by an incoming beam with
Gaussian profile. It is assumed in the simulation that both the
structured material and the incoming beam are periodic
along the y direction, with period equal to a. The MoM nu-
merically solves the Maxwell equations and takes into ac-
count all the details of the microstructure of the crossed wire
mesh, yielding the exact solution of the problem, apart from
“numerical noise.” It is assumed in the simulations that each
plane of inclusions (parallel to the xoz plane) is formed by 90
wires with radius R=0.05a. As depicted in Fig. 1(a), the
wires in alternate planes are perpendicular. The Gaussian
beam illuminates the slab along the direction §;=45° and has
a beam waist equal to 2wy=4.0\ at the normalized frequency
of operation wa/c=0.6 (i.e., a=0.1\). The width of the slab
along x is approximately W=90a2~ 12\. In Fig. 4 we rep-
resent the calculated squared amplitude of the electric field
(which is roughly proportional to the beam intensity) in the
vicinity of the crossed wire mesh for different thicknesses of
the slab. The dashed line represents the propagation path
(maximum of the electric field amplitude) and clearly shows
that the incoming wave is bent with a negative transmission
angle at the interfaces with air. The angle 6, calculated di-
rectly from the spatial shift A is 6,=-22°, §,=-25°, and 6,
=-30° for panels (a)—(c) of Fig. 4, respectively. These values
match relatively well the theoretical value of 6,=-25°
(Fig. 2).

It is interesting to note that the electric field amplitude is
significantly lower in the metamaterial slab, as compared to
the air regions, particularly in panels (b) and (c) of Fig. 4.
One of the reasons is that the field distribution of panels (b)
and (c) was calculated at a plane equidistant from two adja-
cent wire planes, whereas the field distribution of panel (a)
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FIG. 4. (Color online) Normalized |E|? in the vicinity of the crossed wire mesh calculated by solving the Maxwell equations using the
method of moments. The incoming wave has a Gaussian profile. Both the metamaterial slab and the incoming beam are periodic along y. The
wires lie in planes parallel to the xoz plane and have radius of R=0.05a. Each plane of wires contains 90 wires. The frequency of operation
is wa/c=0.6. Panel (a): L=10.0a; panel (b): L=21.0a; panel (c): L=31.0a.

was evaluated on a plane with wires. The second reason is
that the wave impedance # in the crossed wire mesh is lower
than in free space,!? and thus, since beam intensity is roughly
|E|?/27, the conservation of energy requires that the squared
amplitude of the electric field is lower in the metamaterial.
Despite the difference between the impedance in the struc-
tured material and free space, it is evident from the simula-
tions that the level of reflections is relatively weak.

In conclusion, we have demonstrated that a crossed wire
mesh may enable negative refraction over a wide frequency
band. The described phenomenon does not rely on a reso-
nance of the inclusions, and due to this reason the effect of
loss is expected to be relatively small, particularly when the

radius of the wires is smaller than the skin depth of metal.'?

A block of the considered material enables negative refrac-
tion if the interface is normal either to the x or to the z
direction. In this regard, the response of the metamaterial is
fundamentally different from that of a conventional indefi-
nite anisotropic material, which only yields negative refrac-
tion when the interface is normal to the principal axis along
which the permittivity is negative. The described results il-
lustrate the richness of the physics of nonlocal materials.
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